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Asymptotic analysis of a random walk with a history-dependent step length
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We study an unbiased, discrete-time random walk on the nonnegative integers, with the origin absorbing,
and a history-dependent step length. Lettyrdenote the maximum distance the walker has ever been from the
origin, steps that do not changéave lengthy, while those that increase(taking the walker to a site that has
never been visitedhave lengthn. The process serves as a simplified model of spreading in systems with an
infinite number of absorbing configurations. Asymptotic analysis of the probability generating function shows
that, for larget, the survival probability decays &(t)~t~ %, with §=v/2n. Our expression for the decay
exponent is in agreement with the results obtained via numerical iteration of the transition matrix.
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[. INTRODUCTION walk on the nonnegative integers, with the origin absorbing,
for which S(t) ~t~ ¢ with 5= 1/2. It was recently shown that
Random walks with absorbing and/or reflecting bound-such a walker exhibits a continuously variable exponént
aries and/or memory serve as important models in statisticalhen subject to a mobile, partial reflector. The latter is ini-
physics, often admitting an exact analysis. Among the manyially one site to the right of the walker. Each time the walker
examples are equilibrium models for polymer adsorptionsteps onto the site occupied by the reflector, it is reflected
[1,2] and absorbing-state phase transitif8k Another mo-  one step to the left with probability (it remains at its new
tivation is provided by the spreading of an epidemic in alocation with probability +r); in either case, the reflector
medium with a long memor§4]. In this work we discuss a is pushed forward one site in this encounter. The survival
process where the susceptibility changes after the first infee@xponents=(1+r)/2 in this proces$9]. Since the reflector
tion and remains constant thereafter. effectively records thepanof the walk (i.e., the rightmost
In addition to the intrinsic interest of such an infection site yet visited, its interaction with the walker represents a
with memory, our study is motivated by the spread of activ-memory.
ity in models exhibiting an infinite number of absorbing con-  In the present work, we study a random walk with
figurations(INAC) typified by the pair contact procefs,6]. memory of a different form: if the target sitelies in the
Anomalies in critical spreading for INAC, such as continu- region that has been visited befdtkat is, ifx itself has been
ously variable critical exponents, have been traced to a longisited, or lies between two sites that have been vigitiekn
memory in the dynamics of the order parametedue to  the step length i; otherwise the step length is. If v
coupling to an auxiliary field that remains frozen in regions>n, the random walk evolves infgostileenviroment, while
wherep=0 [6,7]. INAC appears to be particularly relevant for v<n, the enviroment may be regarded fagndly. On
to the transition to spatiotemporal chaos, as shown in a rehe basis of an exact solution for the probability generating
cent study of a coupled-map lattice with “laminar” and “tur- function, we obtain the decay exponeht
bulent” states, which revealed continuously variable spread- The balance of this paper is organized as follows. In Sec.
ing exponents[8]. Grassberger, Chateand Rousseali4] Il we analyze the specific case of a random walk in a hostile
proposed that spreading in INAC could be understood byenviroment withv =2 andn=1, present the solution of the
studying a model with ainiqueabsorbing configuration, but generating function, and obtain the asymptotic behavior of
in which the spreading rate of activity into previously inac- the survival probability. In Sec. Ill we extend the analysis to
tive regions is different than for revisiting a region that hasarbitrary step lengths and n (with v and n natural num-
already been active. berg. In Sec. IV we present exact numerical results for finite
In light of the anomalies found in spreading in modelstimes (from iteration of the probability transfer matjithat
with INAC or with a memory, we are interested in studying complement and extend the asymptotic analysis. Section V
the effect of such a memory on the scaling behavior in acontains a brief summary and discussion.
model whose asymptotic behavior can be determined exactly.
Of particular interest is the survival probabilig(t) (i.e., not
to have fallen into the absorbing state up to tibe The II. RANDOM WALK IN A HOSTILE ENVIROMENT
simplest example of such a model is an unbiased random ) _
A. Model and generating function

Consider an unbiased, discrete time random walk on the

*Email address: dickman@fisica.ufmg.br nonnegative integers, with the origin absorbing. We denote
"Email address: ffaraujo@fisica.ufmg.br the position of the walker at timeby x; and suppose that
*Email address: benavraham@clarkson.edu Xo=1. To define precisely the history dependence,ylet

1063-651X/2002/665)/0511027)/$20.00 66 051102-1 ©2002 The American Physical Society



DICKMAN, ARAUJO, AND BEN-AVRAHAM

y
.<L— [ ] [ ] [ ] [ ]
60<— [ [ J ./
O<i— [ ] [ ] ./

X

-1 0 1 2 3 4 5 6 7

FIG. 1. Random walk in a hostile enviroment: transitions in the

X-y plane.
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To solve the problem specified by E¢3)—(3), we intro-
duce a generating function

ﬁ(x,y,z>=go P(x,y,1)Z, (4

where 0sz=<1. Multiplying Eq. (1) by z', summing overt

and shifting the sum index where necessary, one finds that

the generating function satisfies

1. 1. 1.
EP(x,y)zEP(X+2,y)+§P(x—2,y) for x<y—4,
6)

1. 1, 1.
SPly=2y)=5D(y)+5P(y—4y)  for x=y-2

(6)

(we drop the argumerzfor brevity), whereD(y) is defined

=max {x}. Then, ifx,<y,— 2, the walker jumps two lattice by an expression analogous to E4). The initial condition

spacings to the left or the right. If, howevet=Yy;,, it can
move (with equal probability to y,—2, or toy,+1. (In the
latter casey;,1=Yy;+1. Notice thaty,—x=0 must be
even) Let sites 1. ..y, define theknown region steps to

sites within the known region have length 2, while those that

take the walker into thenknownregion x>y;) are of unit
length.

Evidently, the process; is non-Markovian, since the tran-
sition probability into a given site depends on whether it lies

implies D(1)= 1; the boundary conditions are

P(x,y)=0 for x=<0, (7)
. 1. 1,
ED(y)= 5D(y—1)+ EP(y—Z,y) for y=2. (8

Next, we focus on Eq(8) in order to eliminateD (y) in

in the known or the unknown region. We can however transgq. (6), and then find a recurrence relation i%(x,y). Sub-
form the model to a Markov process by enlarging the statetituting Eq.(6) in Eq. (8) we have
spacd 10] to include the boundary between the two regions.

Evidently, the stochastic process; (y;) is Markovian. The

transitions(all with probability 1/2) for the Markov chain are

restricted to the sef C 72 specified by
E={(x,y)eZ%:x=—1,y=1,x<y, y—X is even}

as represented in Fig. 1.
Let P(x,y,t) denote the probability of statecy) (for x
>0), at timet. P(x,y,t) follows the evolution equation

1 1
P(x,y,t+1)=EP(X+2,y,t)+§P(x—2,y,t) for x<vy,
(2)

with P(1,11) = &y, . Equation(1) is subject to two boundary

conditions. The first is the absorbing condition fo<0,
P(x,y,t)=0 for x=<0. (2
The second applies along the diagoxaly. In this case, itis

convenient to defin® (y,t)=P(y,y,t). On the diagonal the
evolution equation is

1 1
D(y,t+1):§ D(y—1t)+ EP(y—Z,y,t) for y=2.
3

2

1- P(y—4y). (9

Z)ZA oz, (z
> D()/)—ED()/—l)Jr >

If we subtractz/2 times Eq.(9), evaluated ay—1, from the
corresponding equation for, we find

{3

2)2 . z.
> P(y—4,y)—§P(y—5,y—1)-

~ Z, Z| . Z .
{D(y)— 5D(y—l>}= 5/D(-1)- ED(y—zﬂ

+

Using Eq.(8) we eliminateD(y), D(y—1), andD(y—2) to
obtain

z (2)2 . B Z)ZA
> 1- > P(y—2y)= > P(y—3y-1)
z\ .
+ 5) P(y—4y)
Z .
—5Py=5y— 1),

yielding the recurrence relation
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55 |P(Y=2y)—P(y—4y)=P(y=3y—1)

~2Py-5y-1). 10

Equation(5) relatesP(x,y) for differentx, at fixedy. We
therefore impose separation of variables and write, Xor
sy—2,

P(x,y)=A(x)B(y). (12)

Equation(2) requiresA(x) =0 for x<0, which is satisfied if

R N—=N\"* for x=0,
AX=1g for x<O0. (12
In this context, Eq(5) implies
172
A= ! \/1 1 13
= E+ ; . (13

[Note that the use of the second solution, =(z"*!
—\z72=1)Y2=)\"1, would simply result in a change in the

sign of A.] Substituting Eq(11) in Eq. (10) we find

Bly)  2zA(y-3)-Z?A(y-5)
B(y—1) (4—2)A(y—2)—2zAly—4)

(14

B. The survival probability
The survival probability is

[(y-1)/2]

20 P(y—2k,y,1),

S(t)=2>,
y=2

where[ ] denotes the integer part of its argument. The corre-

sponding generating function is

”S<z>=t:20 S(t)2'=5p(2) + 5p(2),

(15
where  Sp(2)=37_,SVAP(y-2ky) and Sy(2)

PHYSICAL REVIEW E 66, 051102 (2002

S2=55 1+ 3 Ay-280)|. a9

C. Asymptotic analysis
We address th&auberianproblem[11] of extracting the
larget asymptotics ofS(t) from the dominant singularity of

its generating functiorS(z), asz]1. In order to study this
limit, let z=1— ¢, with €| 0. We will show that as— «, the
dominant contribution to the survival probability comes from

Sp(2).

To determine the asymptotic behaviorfﬁ;f, we analyze
B(y) and the sun=[Y; V'2A(y—2k) separately. First, we
focus onB; in light of Eq. (14), it is convenient to write

. . Y B(k
B<y>=B<3>k[[ 1o (19)

4 B(k—1)

From Eq. (11) we have B(3)=P(1,3)/A(1), with A(1)
=.2¢, as €|0. (We use the symbol £” to indicate
asymptotic equality as|0.) On the other hand, Eq8) im-
plies thatP(1,3)=(2/z)D(3)—D(2), whereD(2)=2z/2. It-
erating Eq.(3) we have

if tisodd,

D(3t)=4 2
0 iftiseven,

so thatD(3)=2z/(4—Z7%). Evidently, P(1,3)=%, ase|0,
and therefore,

1

62¢

B(3)= (20)

The ratioB(k)/B(k—1) may be analyzed by inserting Eq.

(12 in Eq. (14),

B(k)

B(k—1)

=E;°:2I5(y). We study these series separately. To begin, we

insert Eq.(11) in Sp to obtain

= [(y-1)/2]

S(2=2, > Ay—2kB(y). (16)
y=2 k=1

Next we examineSy(z). Iterating Eq.(8), we have

z

~ Zy—l y y+l—jA
D<y>=(§) +2 5) P(j-2j). @7

Summing Eq(17) overy=2 we find

B AK(22N 3 =220 75 — A K 22n 8- 220\ )
MN(4—Z2)N"2=220 4 -\ (4—N2-2\%]

For smalle, A\=1+%2e+0O(e). Then,

1
" k -k k -k
B(K) A=A 2\/26()\ +A79)

B(k—1) A=A "X+ 2e(\k+rK)

Now, letting A=In(\), we have
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2 1
~ tan)-(Ek) —E\/Z
Bk—1) "(JZ
tan

k) +2e
Letting ¢, = tant (y2€/2)k], this yields

M

k=4

B(k)
B(k—1)

Approximating the sum by an integral, we have

y ‘
(VZely 1
e —dw
2 ¢ J2el2yze  tanh(w)
[ \2e
5 sin Ty

|
Ve | sinh2\2e)

and hence,

where C is a constant. Inserting Eq820) and (21) in Eq.

(19) we find

;@).

B(y)~
sinh°’( Ty

(By “~" we mean asymptotic proportionality as| 0, i.e.,
multiplicative constants are ignoredkinally, we note that as

€|0,

2
[(y-1)12] [A( %) }

Al =t v
gl Aly—2l=" o zsmhz(

)

(21)

(22

(23

PHYSICAL REVIEW E 66, 051102 (2002

. sinhz(%w)
T
H(e)~e f\ﬂ sin?(w) aw

Let us denote the integrand Ibyw) and the integral by(e).
Sincef(w) has a pole of order 1, we introduce the Laurent
expansion

o0

1
f(w)= ZW’1+ > awk
k=0

and integrate the series term by term. Noting that the domi-
nant contribution, as|0, comes from the first term, we
have

1 1
|(E)~—f wtdw=— =In(e).
2e 8
Thus,

Sp~—In(e).

Using the same line of reasoning, it can be shown that
IimelOASD/Aszo. Therefore, the dominant singular behavior

of Sasz{1 is given by

S(z)~ —In(1-2).

The coefficient ofz! in the expansion of-In(1—2) is t 2,
and so the survival probability decays asymptotically &s

Ill. ARBITRARY STEP LENGTHS

In this section, we generalize the analysis of Sec. Il to a
walker with an arbitrary history-dependent step length.i_et
be the step length for target sites in the known region,rand
the step length in case the target site lies in the unknown
region. We consider the Markov chaix;(y;), with y; as
defined in Sec. Il and transitions with probability 1/2. The
probability P(x,y,t) follows the equation

1 1
P(xy,t+1)= EP(x+v,y,t)+ EP(x—v,y,t)

for x<y, (24)

With these results, we are in a position to analyze the

asymptotic behavior 08y and Sy .

First, we determine the asymptotic behavior %p‘(z).

Substituting Egs(23) and (22) in Eq. (16) we find
_ r?( V2e )
» SinhF| —
Q 1/22 4 y
Sp~¢€ —_—
y=2 V2e
sin

Py

Denoting the sum byd(€), we have

with P(1,1t)= 6;. Equation(24) is subject to two bound-
ary conditions, the first, Eq2), is due to the absorbing con-
dition. The second applies along the diagaxaly. Defining
D(y,t)=P(y,y,t) as before, we have

1 1
D(y,t+1)= ED(y— n,t)+ EP(y—v,y,t)

for y=n+1. (25)

Introducing the generating functiofx,y) andD(y) as in
Sec. Il, one readily finds

051102-4



ASYMPTOTIC ANALYSIS OF A RANDOM WALK WITHA . .. PHYSICAL REVIEW E 66, 051102 (2002

1. 1. 1. whereL=[nj/v]. We define
EP(x,y)=EP(x+v,y)+§P(x—v,y), for x=sy-—2v,

0 L
(26) 5(2)=>, > P(nj—vk+1nj+1)
j=1 k=1
1ﬁ>( ) 115( )+1ﬁ>( 2v,y) f | L
SPy—uv,y)=5Dy)+ 5P(y—2v,y) Tor X=y-—v. ” R R
z 2 2 ) => > A(nj—vk+1)B(nj+1) (33
27 <1
The initial condition isD(1)=1, and the boundary condi- gnq
tions are
P(x,y)=0 for x<0, (28 Sp(2)=2, D(nj+1).
i=1
1. 1. 1, . .
ED(y)I ED(y—n)+ EP(y—v,y) for y=n+1. Iterating Eq.(29) we find
(29 A N Y
Proceeding as in Sec. II, one finds the recurrence relation Dinj+1)= 2 +k21 (5) P(nk=v-+1nk+1).
4l ) (34
27 P(y=v,y)=P(y=2uv,y) Summing Eq.(34) overy=n+1, and inserting the expres-

. sions found previously foP(x,y), we have
=P(y-v-ny-n)--P(y-2v-ny-n. (30

. z . .
A S(2=5-; 1+, A(nj—v+1)B(nj+1)|. (35
The solution forP(x,y) is again of the form of Eq(11), with z =1

A again given by Eq(12), but with In order to determine the asymptotic behavior of Eg§8)

1 1 1o and (35), we analyzeA, B, and the sumSi_,A(nj—uvk
-1 +1) separately. First, we writB in the form

j A
: : — R R B(nk+1
With this, one readily finds B(nj+1)=B(nky+1) [] ( )

——, (36
k=ko+1 B(nk—n+1)

Bly) 2zAly—v-—n)—Z?A(y—2v—n)
By—n) (4-2)A(y-v)—2zAy-2v)

(31

wherekg is the smallest positive integer such that the argu-
i ment of A(x) is positive. Note that

Sincey=nj+1 andx=y—vk=nj—vk+1, S(z) is given A

by B(nk0+1)zcl(vlnvk0)671/21 (37)
8(2)= 2 2 B(nj—vk+1nj+1), (32) with C4(v,n,ky) a coefficient that depends an n, andk.

= The ratioB(y)/B(y—n) may be written as

|
B(y) _ NY(2ZN U =22 T T -\ TY(22\ v N2\t
Bly—n) N[(4-2)\""=220"®]-AV[(4=)N°—220*]

For smalle, A\=1+(1/)+/2¢, and J2e n
. tani —y | — —/2e
B(y) v v
- NN Y= Ze(WHAY) 5 - '
B(y) v B(y—n) V2e
= = - —. tanh —vy +2e
Bly—n) N =AY+ J2e(\Y+N7Y) v
A calculation analogous to that leading to E@2) then

As before, letA =In(\). Then, yields,
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6v/2n

B(nj+1)=Cy(v,n,ko) > ,
sinht /M —— (1+nj)
U
(39)

with C,(v,n,kp) a coefficient that depends aen n, andk.
Finally, we note that ag| 0,

R nj+1) 2
L A >
S Anj-vkt+ =2
k=1 v\2€
2
~ e V25ink? 2—U€(nj+1) . (39

PHYSICAL REVIEW E 66, 051102 (2002

InS

0 2 4 6 8 10

0 2 4 6 8 10

With these results, we are in a position to analyze the

asymptotic behavior ofsp and SD .

First, we determine the asymptotic behavior $f(z).
Substituting Eqs(39) and (38) in Eqg. (33) we find

2e
. sint? 2—(nj+1)
o evi2n-123 v
-1

2e€
sinh““’“[—(anrl)
v

As before, we approximate the sum, denotéfk), by an
integral,

. sinf?(%w)
H(E)"’ 12

€ ————dw,

n\/z qsl/ZSinhl+v/n(W)

with g=(1+n)\2/v. Let us denote the integrand yw)
and the integral by(e€). First, note that ib <n, thenf(w) is
bounded and(e) converges. Therefore,

Sp~e’>" 1 for v<n.

On the other hand, i# >n, thenf(w) diverges asv|0 and
decays exponentially fow>1. In particular, ifv/n=2m,
with m=1,2,3 ..., thenf(w) has a pole of ordem. Intro-
ducing the Laurent expansion

f(w)= 2}0 a(mywk+ kgl b, (m)w X

Int

FIG. 2. Main graph: decay of survival probability in the hostile
model withv=2 andn=1; the equation of the solid line iS
=2/t. Inset: A=In[In(2/t) —In t)] versus Irt; the slope of the
straight line is¢p=—1.

and integrating the series term by term, we note that the

dominant contribution t&p, ase| 0, comes from the term
proportional tow 1. Thus,

I(e)~by(m) fql llzwfldw~ —by(m)In(e).

Sinceb;(m) is the residue of (w) atw=0, we may relate it

to an integral around a closed contour containing the origin
in the complexw plane. In this manner we can establish the
recurrence relation

1
by(m)=— ﬁ[bl(m_1)_bl(m_2)+b1(m_3)_ EE

+(=1)"3by(1)],

where b;(1)=1/4, as found in Sec. Il. Observe that the
b;(m) alternate in sign. Thus,

Sp~(—1)"e’2 " Yn(e)  for v=2mn.

Using the same line of reasoning, it can be shown that if
<v#2mn, thenSp~€”"~1. Moreover, IirnflOASD/épzo.

Therefore, the dominant singular behavior ®fas z]1 is
given by

(—1)"2"(1—2)"* Yn(1-2z) for v=2n,4n,6n, ...,

S(z)~

(1_Z)U/2n*1

otherwise.
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The coefficient ofz' (for large t) in the expansion of TABLE I. Step lengths studied via iteration.
(—1)"?"(1—2)"">~1In(1-2) is proportional tot "> and

therefore the survival probability decays asymptotically as v n 6

t~v2" for v =2mn. On the other hand, since the coefficient 1 5 14
of Z! (for larget) in the expansion of (+z)® is proportional 2 3 1/3
to t~°, with 6=1+ «, we conclude that the survival prob- 3 5 3/
ability decays asymptotically &sv/", for v #2mn as well. 3 1 32
Thus, we haves(t) ~t /2" for arbitrary step lengths and A 1 )

n, which is the result we set out to prove.

IV. NUMERICAL RESULTS fied numerically that, in all the cases studied, the mean po-

_ _ _ __ sition conditioned on survivdix)s~tY? and that x?)~t, as
In this section we report exact numerical results for finitejs 19 pe expected.

times ¢=<10% from iteration of the discrete time evolution

equations. Consider first the hostile enviroment. Iteration of V. DISCUSSION
Eq. (1), subject to the boundary conditions of E48) and ) ) _ .
(3), yields the survival probabilitys(t) as shown in Fig. 2. We have studied the asymptotic survival probability of a

times. It is interesting to examine the mode of approach t&in absorbing, and with a step length that depends on

this scaling limit; assuming a power-law correction to theWhether the target site lies within the region that has been
scaling term, we write visited before. In all the cases studied, we find that the sur-

vival probability decays asymptotically as a power law,
S(t)~t~°, where §=v/2n. Our expression for the decay

, (40) exponent is in agreement with the results obtained via nu-
merical iteration of the transition matrix.

2 A
S(t)= n 1+ 0
so that the dominant correction to scaling =" ). If this
form is correct, then at long times IMKt)/2]~C— ¢ Int,
whereC is a constant. Our results confirm the assumed cor- We thank Miguel A. Moz for helpful comments, in par-
rection to scaling and yield an exponent@# 1 (see Fig. 2, ticular for suggesting the study of the friendly enviroment.
inse). We have also analyzed, via iteration, the step-lengttWe also thank Deepak Dhar for helpful discussions. R.D. and
combinations listed in Table I. F.F.A. acknowledge financial support from CNBrazil);

In all cases, the predicted value &fis confirmed and the D.b-A. acknowledges the support of the NSF under Grant
correction to scaling exponeut is unity. We have also veri- No. PHY-0140094.
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