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Asymptotic analysis of a random walk with a history-dependent step length
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We study an unbiased, discrete-time random walk on the nonnegative integers, with the origin absorbing,
and a history-dependent step length. Lettingy denote the maximum distance the walker has ever been from the
origin, steps that do not changey have lengthv, while those that increasey ~taking the walker to a site that has
never been visited! have lengthn. The process serves as a simplified model of spreading in systems with an
infinite number of absorbing configurations. Asymptotic analysis of the probability generating function shows
that, for larget, the survival probability decays asS(t);t2d, with d5v/2n. Our expression for the decay
exponent is in agreement with the results obtained via numerical iteration of the transition matrix.
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I. INTRODUCTION

Random walks with absorbing and/or reflecting boun
aries and/or memory serve as important models in statis
physics, often admitting an exact analysis. Among the m
examples are equilibrium models for polymer adsorpt
@1,2# and absorbing-state phase transitions@3#. Another mo-
tivation is provided by the spreading of an epidemic in
medium with a long memory@4#. In this work we discuss a
process where the susceptibility changes after the first in
tion and remains constant thereafter.

In addition to the intrinsic interest of such an infectio
with memory, our study is motivated by the spread of act
ity in models exhibiting an infinite number of absorbing co
figurations~INAC! typified by the pair contact process@5,6#.
Anomalies in critical spreading for INAC, such as contin
ously variable critical exponents, have been traced to a l
memory in the dynamics of the order parameterr due to
coupling to an auxiliary field that remains frozen in regio
wherer50 @6,7#. INAC appears to be particularly relevan
to the transition to spatiotemporal chaos, as shown in a
cent study of a coupled-map lattice with ‘‘laminar’’ and ‘‘tur
bulent’’ states, which revealed continuously variable spre
ing exponents@8#. Grassberger, Chate´, and Rousseau@4#
proposed that spreading in INAC could be understood
studying a model with auniqueabsorbing configuration, bu
in which the spreading rate of activity into previously ina
tive regions is different than for revisiting a region that h
already been active.

In light of the anomalies found in spreading in mode
with INAC or with a memory, we are interested in studyin
the effect of such a memory on the scaling behavior in
model whose asymptotic behavior can be determined exa
Of particular interest is the survival probabilityS(t) ~i.e., not
to have fallen into the absorbing state up to timet). The
simplest example of such a model is an unbiased rand
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walk on the nonnegative integers, with the origin absorbi
for which S(t);t2d with d51/2. It was recently shown tha
such a walker exhibits a continuously variable exponend
when subject to a mobile, partial reflector. The latter is i
tially one site to the right of the walker. Each time the walk
steps onto the site occupied by the reflector, it is reflec
one step to the left with probabilityr ~it remains at its new
location with probability 12r ); in either case, the reflecto
is pushed forward one site in this encounter. The survi
exponentd5(11r )/2 in this process@9#. Since the reflector
effectively records thespanof the walk ~i.e., the rightmost
site yet visited!, its interaction with the walker represents
memory.

In the present work, we study a random walk wi
memory of a different form: if the target sitex lies in the
region that has been visited before~that is, ifx itself has been
visited, or lies between two sites that have been visited!, then
the step length isv; otherwise the step length isn. If v
.n, the random walk evolves in ahostileenviroment, while
for v,n, the enviroment may be regarded asfriendly. On
the basis of an exact solution for the probability generat
function, we obtain the decay exponentd.

The balance of this paper is organized as follows. In S
II we analyze the specific case of a random walk in a hos
enviroment withv52 andn51, present the solution of the
generating function, and obtain the asymptotic behavior
the survival probability. In Sec. III we extend the analysis
arbitrary step lengthsv and n ~with v and n natural num-
bers!. In Sec. IV we present exact numerical results for fin
times ~from iteration of the probability transfer matrix! that
complement and extend the asymptotic analysis. Sectio
contains a brief summary and discussion.

II. RANDOM WALK IN A HOSTILE ENVIROMENT

A. Model and generating function

Consider an unbiased, discrete time random walk on
nonnegative integers, with the origin absorbing. We den
the position of the walker at timet by xt and suppose tha
x051. To define precisely the history dependence, letyt
©2002 The American Physical Society02-1
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[maxt $xt%. Then, if xt<yt22, the walker jumps two lattice
spacings to the left or the right. If, however,xt5yt , it can
move ~with equal probability! to yt22, or to yt11. ~In the
latter caseyt115yt11. Notice that yt2xt>0 must be
even.! Let sites 1, . . . ,yt define theknown region; steps to
sites within the known region have length 2, while those t
take the walker into theunknownregion (x.yt) are of unit
length.

Evidently, the processxt is non-Markovian, since the tran
sition probability into a given site depends on whether it l
in the known or the unknown region. We can however tra
form the model to a Markov process by enlarging the st
space@10# to include the boundary between the two regio
Evidently, the stochastic process (xt ,yt) is Markovian. The
transitions~all with probability 1/2) for the Markov chain are
restricted to the setE,Z2 specified by

E5$~x,y!PZ2:x>21, y>1, x<y, y2x is even%

as represented in Fig. 1.
Let P(x,y,t) denote the probability of state (x,y) ~for x

.0), at timet. P(x,y,t) follows the evolution equation

P~x,y,t11!5
1

2
P~x12,y,t !1

1

2
P~x22,y,t ! for x,y,

~1!

with P(1,1,t)5d0,t . Equation~1! is subject to two boundary
conditions. The first is the absorbing condition forx<0,

P~x,y,t !50 for x<0. ~2!

The second applies along the diagonalx5y. In this case, it is
convenient to defineD(y,t)[P(y,y,t). On the diagonal the
evolution equation is

D~y,t11!5
1

2
D~y21,t !1

1

2
P~y22,y,t ! for y>2.

~3!

FIG. 1. Random walk in a hostile enviroment: transitions in t
x-y plane.
05110
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To solve the problem specified by Eqs.~1!–~3!, we intro-
duce a generating function

P̂~x,y,z!5(
t50

`

P~x,y,t !zt, ~4!

where 0<z<1. Multiplying Eq. ~1! by zt, summing over,t
and shifting the sum index where necessary, one finds
the generating function satisfies

1

z
P̂~x,y!5

1

2
P̂~x12,y!1

1

2
P̂~x22,y! for x<y24,

~5!

1

z
P̂~y22,y!5

1

2
D̂~y!1

1

2
P̂~y24,y! for x5y22

~6!

~we drop the argumentz for brevity!, whereD̂(y) is defined
by an expression analogous to Eq.~4!. The initial condition
implies D̂(1)51; the boundary conditions are

P̂~x,y!50 for x<0, ~7!

1

z
D̂~y!5

1

2
D̂~y21!1

1

2
P̂~y22,y! for y>2. ~8!

Next, we focus on Eq.~8! in order to eliminateD̂(y) in
Eq. ~6!, and then find a recurrence relation forP̂(x,y). Sub-
stituting Eq.~6! in Eq. ~8! we have

F12S z

2D 2GD̂~y!5
z

2
D̂~y21!1S z

2D 2

P̂~y24,y!. ~9!

If we subtractz/2 times Eq.~9!, evaluated aty21, from the
corresponding equation fory, we find

F12S z

2D 2GF D̂~y!2
z

2
D̂~y21!G5

z

2 F D̂~y21!2
z

2
D̂~y22!G

1S z

2D 2F P̂~y24,y!2
z

2
P̂~y25,y21!G .

Using Eq.~8! we eliminateD̂(y), D̂(y21), andD̂(y22) to
obtain

z

2 F12S z

2D 2G P̂~y22,y!5S z

2D 2

P̂~y23,y21!

1S z

2D 2F P̂~y24,y!

2
z

2
P̂~y25,y21!G ,

yielding the recurrence relation
2-2
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F42z2

2z G P̂~y22,y!2 P̂~y24,y!5 P̂~y23,y21!

2
z

2
P̂~y25,y21!. ~10!

Equation~5! relatesP̂(x,y) for differentx, at fixedy. We
therefore impose separation of variables and write, fox
<y22,

P̂~x,y!5Â~x!B̂~y!. ~11!

Equation~2! requiresÂ(x)50 for x<0, which is satisfied if

Â~x!5H lx2l2x for x>0,

0 for x,0 .
~12!

In this context, Eq.~5! implies

l5S 1

z
1A1

z2
21D 1/2

. ~13!

@Note that the use of the second solution,l25(z21

2Az2221)1/25l21, would simply result in a change in th
sign of Â.# Substituting Eq.~11! in Eq. ~10! we find

B̂~y!

B̂~y21!
5

2zÂ~y23!2z2Â~y25!

~42z2!Â~y22!22zÂ~y24!
. ~14!

B. The survival probability

The survival probability is

S~ t !5 (
y52

`

(
k50

[( y21)/2]

P~y22k,y,t !,

where@ # denotes the integer part of its argument. The cor
sponding generating function is

Ŝ~z!5(
t50

`

S~ t !zt5ŜP~z!1ŜD~z!, ~15!

where ŜP(z)5(y52
` (k51

@(y21)/2#P̂(y22k,y) and ŜD(z)

5(y52
` D̂(y). We study these series separately. To begin,

insert Eq.~11! in ŜP to obtain

ŜP~z!5 (
y52

`

(
k51

[( y21)/2]

Â~y22k!B̂~y!. ~16!

Next we examineŜD(z). Iterating Eq.~8!, we have

D̂~y!5S z

2D y21

1(
j 52

y S z

2D y112 j

P̂~ j 22,j !. ~17!

Summing Eq.~17! over y>2 we find
05110
-

e

ŜD~z!5
z

22z F11 (
y52

`

Â~y22!B̂~y!G . ~18!

C. Asymptotic analysis

We address theTauberianproblem@11# of extracting the
large-t asymptotics ofS(t) from the dominant singularity of
its generating functionŜ(z), asz↑1. In order to study this
limit, let z512e, with e↓0. We will show that ast→`, the
dominant contribution to the survival probability comes fro
ŜP(z).

To determine the asymptotic behavior ofŜP , we analyze
B̂(y) and the sum(k51

@(y21)/2#Â(y22k) separately. First, we

focus onB̂; in light of Eq. ~14!, it is convenient to write

B̂~y!5B̂~3!)
k54

y
B̂~k!

B̂~k21!
. ~19!

From Eq. ~11! we have B̂(3)5 P̂(1,3)/Â(1), with Â(1)
.A2e, as e↓0. ~We use the symbol ‘‘. ’’ to indicate
asymptotic equality ase↓0.! On the other hand, Eq.~8! im-
plies thatP̂(1,3)5(2/z)D̂(3)2D̂(2), whereD̂(2)5z/2. It-
erating Eq.~3! we have

D~3,t !5H 1

2t
if t is odd,

0 if t is even,

so thatD̂(3)52z/(42z2). Evidently, P̂(1,3). 1
6 , as e↓0,

and therefore,

B̂~3!.
1

6A2e
. ~20!

The ratio B̂(k)/B̂(k21) may be analyzed by inserting Eq
~12! in Eq. ~14!,

B̂~k!

B̂~k21!

5
lk~2zl232z2l25!2l2k~2zl32z2l5!

lk@~42z2!l2222zl24#2l2k@~42z2!l222zl4#
.

For smalle, l511 1
2 A2e1O(e). Then,

B̂~k!

B̂~k21!
.

lk2l2k2
1

2
A2e~lk1l2k!

lk2l2k1A2e~lk1l2k!
.

Now, lettingL5 ln(l), we have
2-3
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B̂~k!

B̂~k21!
.

tanhS A2e

2
kD 2

1

2
A2e

tanhS A2e

2
kD 1A2e

.

Letting fk5tanh@(A2e/2)k#, this yields

(
k54

y

lnF B̂~k!

B̂~k21!
G.2S 3

2DA2e(
k54

y
1

fk
.

Approximating the sum by an integral, we have

(
k54

y
1

fk
.

2

A2e
E

2A2e

(A2e/2)y 1

tanh~w!
dw

.
2

A2e
lnF sinhSA2e

2
yD

sinh~2A2e!
G ,

and hence,

)
k54

y
B̂~k!

B̂~k21!
.C

e3/2

sinh3FA2e

2
yG , ~21!

whereC is a constant. Inserting Eqs.~20! and ~21! in Eq.
~19! we find

B̂~y!;
e

sinh3S A2e

2
yD . ~22!

~By ‘‘ ; ’’ we mean asymptotic proportionality ase↓0, i.e.,
multiplicative constants are ignored.! Finally, we note that as
e↓0,

(
k51

[( y21)/2]

Â~y22k!.
F ÂS y

2D G2

2A2e
;e21/2sinh2SA2e

4
yD .

~23!

With these results, we are in a position to analyze
asymptotic behavior ofŜP and ŜD .

First, we determine the asymptotic behavior ofŜP(z).
Substituting Eqs.~23! and ~22! in Eq. ~16! we find

ŜP;e1/2(
y52

` sinh2S A2e

4
yD

sinh3S A2e

2
yD .

Denoting the sum byH(e), we have
05110
e

H~e!;e21/2E
A2e

`
sinh2S 1

2
wD

sinh3~w!
dw.

Let us denote the integrand byf (w) and the integral byI (e).
Since f (w) has a pole of order 1, we introduce the Laure
expansion

f ~w!5
1

4
w211 (

k50

`

akw
k

and integrate the series term by term. Noting that the do
nant contribution, ase↓0, comes from the first term, we
have

I ~e!.
1

4EA2e

1

w21dw.2
1

8
ln~e!.

Thus,

ŜP;2 ln~e!.

Using the same line of reasoning, it can be shown t
lim

e↓0
ŜD /ŜP50. Therefore, the dominant singular behavi

of Ŝ asz↑1 is given by

Ŝ~z!;2 ln~12z!.

The coefficient ofzt in the expansion of2 ln(12z) is t21,
and so the survival probability decays asymptotically ast21.

III. ARBITRARY STEP LENGTHS

In this section, we generalize the analysis of Sec. II to
walker with an arbitrary history-dependent step length. Lev
be the step length for target sites in the known region, ann
the step length in case the target site lies in the unkno
region. We consider the Markov chain (xt ,yt), with yt as
defined in Sec. II and transitions with probability 1/2. Th
probability P(x,y,t) follows the equation

P~x,y,t11!5
1

2
P~x1v,y,t !1

1

2
P~x2v,y,t !

for x,y, ~24!

with P(1,1,t)5d t,0 . Equation~24! is subject to two bound-
ary conditions, the first, Eq.~2!, is due to the absorbing con
dition. The second applies along the diagonalx5y. Defining
D(y,t)5P(y,y,t) as before, we have

D~y,t11!5
1

2
D~y2n,t !1

1

2
P~y2v,y,t !

for y>n11. ~25!

Introducing the generating functionsP̂(x,y) andD̂(y) as in
Sec. II, one readily finds
2-4



-

n

-

u-

ASYMPTOTIC ANALYSIS OF A RANDOM WALK WITH A . . . PHYSICAL REVIEW E 66, 051102 ~2002!
1

z
P̂~x,y!5

1

2
P̂~x1v,y!1

1

2
P̂~x2v,y!, for x<y22v,

~26!

1

z
P̂~y2v,y!5

1

2
D̂~y!1

1

2
P̂~y22v,y! for x5y2v.

~27!

The initial condition isD̂(1)51, and the boundary condi
tions are

P̂~x,y!50 for x<0, ~28!

1

z
D̂~y!5

1

2
D̂~y2n!1

1

2
P̂~y2v,y! for y>n11.

~29!

Proceeding as in Sec. II, one finds the recurrence relatio

F42z2

2z G P̂~y2v,y!2 P̂~y22v,y!

5 P̂~y2v2n,y2n!2
z

2
P̂~y22v2n,y2n!. ~30!

The solution forP̂(x,y) is again of the form of Eq.~11!, with
Â again given by Eq.~12!, but with

l5S 1

z
1A1

z2
21D 1/v

With this, one readily finds

B̂~y!

B̂~y2n!
5

2zÂ~y2v2n!2z2Â~y22v2n!

~42z2!Â~y2v !22zÂ~y22v !
. ~31!

Sincey5n j11 andx5y2vk5n j2vk11, Ŝ(z) is given
by

Ŝ~z!5(
j 51

`

(
k50

L

P̂~n j2vk11,n j11!, ~32!
05110
whereL5@n j /v#. We define

ŜP~z!5(
j 51

`

(
k51

L

P̂~n j2vk11,n j11!

5(
j 51

`

(
k51

L

Â~n j2vk11!B̂~n j11! ~33!

and

ŜD~z!5(
j 51

`

D̂~n j11!.

Iterating Eq.~29! we find

D̂~n j11!5S z

2D j

1 (
k51

j S z

2D j 112k

P̂~nk2v11,nk11!.

~34!

Summing Eq.~34! over y>n11, and inserting the expres
sions found previously forP̂(x,y), we have

ŜD~z!5
z

22z F11(
j 51

`

Â~n j2v11!B̂~n j11!G . ~35!

In order to determine the asymptotic behavior of Eqs.~33!

and ~35!, we analyzeÂ, B̂, and the sum(k51
L Â(n j2vk

11) separately. First, we writeB̂ in the form

B̂~n j11!5B̂~nk011! )
k5k011

j
B̂~nk11!

B̂~nk2n11!
, ~36!

wherek0 is the smallest positive integer such that the arg
ment of Â(x) is positive. Note that

B̂~nk011!.C1~v,n,k0!e21/2, ~37!

with C1(v,n,k0) a coefficient that depends onv, n, andk0.
The ratioB̂(y)/B̂(y2n) may be written as
B̂~y!

B̂~y2n!
5

ly~2zl2v2n2z2l22v2n!2l2y~2zlv1n2z2l2v1n!

ly@~42z2!l2v22zl22v#2l2y@~42z2!lv22zl2v#
.

For smalle, l.11(1/v)A2e, and

B̂~y!

B̂~y2n!
.

ly2l2y2
n

v
A2e~ly1l2y!

ly2l2y1A2e~ly1l2y!
.

As before, letL5 ln(l). Then,
B̂~y!

B̂~y2n!
.

tanhS A2e

v
yD 2

n

v
A2e

tanhS A2e

v
yD 1A2e

.

A calculation analogous to that leading to Eq.~22! then
yields,
2-5
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B̂~n j11!.C2~v,n,k0!
ev/2n

sinh11v/nFA2e

v
~11n j !G ,

~38!

with C2(v,n,k0) a coefficient that depends onv, n, andk0.
Finally, we note that ase↓0,

(
k51

L

Â~n j2vk11!.
F ÂS n j11

2 D G2

vA2e

;e21/2sinh2FA2e

2v
~n j11!G . ~39!

With these results, we are in a position to analyze
asymptotic behavior ofŜP and ŜD .

First, we determine the asymptotic behavior ofŜP(z).
Substituting Eqs.~39! and ~38! in Eq. ~33! we find

ŜP;ev/2n21/2(
j 51

` sinh2FA2e

2v
~n j11!G

sinh11v/nFA2e

v
~n j11!G .

As before, we approximate the sum, denotedH(e), by an
integral,

H~e!;
v

nA2
e21/2E

qe1/2

`
sinh2S 1

2
wD

sinh11v/n~w!
dw,

with q5(11n)A2/v. Let us denote the integrand byf (w)
and the integral byI (e). First, note that ifv,n, thenf (w) is
bounded andI (e) converges. Therefore,

ŜP;ev/2n21 for v,n.

On the other hand, ifv.n, then f (w) diverges asw↓0 and
decays exponentially forw@1. In particular, if v/n52m,
with m51,2,3, . . . , then f (w) has a pole of orderm. Intro-
ducing the Laurent expansion

f ~w!5 (
k50

`

ak~m!wk1 (
k51

m

bk~m!w2k
05110
e

and integrating the series term by term, we note that
dominant contribution toŜP , ase↓0, comes from the term
proportional tow21. Thus,

I ~e!;b1~m!E
qe1/2

1

w21dw;2b1~m!ln~e!.

Sinceb1(m) is the residue off (w) at w50, we may relate it
to an integral around a closed contour containing the ori
in the complex-w plane. In this manner we can establish t
recurrence relation

b1~m!52
1

2m
@b1~m21!2b1~m22!1b1~m23!2•••

1~21!m 3b1~1!#,

where b1(1)51/4, as found in Sec. II. Observe that th
b1(m) alternate in sign. Thus,

ŜP;~21!v/2nev/2n21ln~e! for v52mn.

Using the same line of reasoning, it can be shown that in

,vÞ2mn, then ŜP;ev/2n21. Moreover, lim
e↓0

ŜD /ŜP50.

Therefore, the dominant singular behavior ofŜ as z↑1 is
given by

FIG. 2. Main graph: decay of survival probability in the hosti
model with v52 and n51; the equation of the solid line isS
52/t. Inset: D5 ln@ln(2/t)2 ln S(t)# versus lnt; the slope of the
straight line isf521.
Ŝ~z!;H ~21!v/2n~12z!v/2n21ln~12z! for v52n,4n,6n, . . . ,

~12z!v/2n21 otherwise.
2-6
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The coefficient ofzt ~for large t) in the expansion of
(21)v/2n(12z)v/2n21 ln(12z) is proportional tot2v/2n and
therefore the survival probability decays asymptotically
t2v/2n, for v52mn. On the other hand, since the coefficie
of zt ~for larget) in the expansion of (12z)a is proportional
to t2d, with d511a, we conclude that the survival prob
ability decays asymptotically ast2v/2n, for vÞ2mn as well.
Thus, we haveS(t);t2v/2n for arbitrary step lengthsv and
n, which is the result we set out to prove.

IV. NUMERICAL RESULTS

In this section we report exact numerical results for fin
times (t<104) from iteration of the discrete time evolutio
equations. Consider first the hostile enviroment. Iteration
Eq. ~1!, subject to the boundary conditions of Eqs.~2! and
~3!, yields the survival probabilityS(t) as shown in Fig. 2.
Evidently,S(t) approaches the asymptotic value, 2/t, at long
times. It is interesting to examine the mode of approach
this scaling limit; assuming a power-law correction to t
scaling term, we write

S~ t !.
2

t S 11
A

tfD , ~40!

so that the dominant correction to scaling;t2(11f). If this
form is correct, then at long times ln ln@tS(t)/2#;C2f lnt,
whereC is a constant. Our results confirm the assumed c
rection to scaling and yield an exponent off51 ~see Fig. 2,
inset!. We have also analyzed, via iteration, the step-len
combinations listed in Table I.

In all cases, the predicted value ofd is confirmed and the
correction to scaling exponentf is unity. We have also veri-
s
e,

.

05110
s

f

o

r-

h

fied numerically that, in all the cases studied, the mean
sition conditioned on survival̂x&s;t1/2 and that̂ x2&s;t, as
is to be expected.

V. DISCUSSION

We have studied the asymptotic survival probability of
random walker on the one-dimensional lattice, with the o
gin absorbing, and with a step length that depends
whether the target site lies within the region that has b
visited before. In all the cases studied, we find that the s
vival probability decays asymptotically as a power la
S(t);t2d, where d5v/2n. Our expression for the deca
exponent is in agreement with the results obtained via
merical iteration of the transition matrix.
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TABLE I. Step lengths studied via iteration.

v n d

1 2 1/4
2 3 1/3
3 2 3/4
3 1 3/2
4 1 2
.

s.

nd
@1# M. N. Barber and B. W. Ninham,Random and Restricted
Walks~Gordon and Breach, New York, 1970!.

@2# K. De’Bell and T. Lookman, Rev. Mod. Phys.65, 87 ~1993!.
@3# J. Marro and R. Dickman,Nonequilibrium Phase Transition

in Lattice Models~Cambridge University Press, Cambridg
1999!.

@4# P. Grassberger, H. Chate´, and G. Rousseau, Phys. Rev. E55,
2488 ~1997!.

@5# I. Jensen, Phys. Rev. Lett.70, 1465 ~1993!; I. Jensen and R
Dickman, Phys. Rev. E48, 1710~1993!.
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